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Nonlinear Finite Element Analysis of
a Laminated Cylindrical Shell
with Transverse Matrix Cracks

Soo-Yong Lee* and Jungsun Park**
(Received March 12, 1999)

A clamped laminated cylindrical shell is presented to investigate nonlinear structural behavior

involving geometrically nonlinear deformation. In the investigation, transverse matrix cracks are

considered in the stiffness of the laminated cylindrical shell. Stiffness degradation is examined

for several laminated angles and transverse crack density. Micro-mechanics theory on the

composite material was used to derive the degraded stiffness of the laminated cylindrical shell

due to the crack density. Iterative numerical scheme was developed to calculate the degraded

composite stiffness which is a complicated relation with the crack density. A nonlinear finite

element program was developed using 3-D degenerated shell element and the first order shear

deformation theory to consider the large deformation of the clamped laminated cylindrical shell.

The updated Lagrangian method is used for nonlinear finite element analysis. Nonlinear

structural responses of the laminated cylindrical shell were examined for various stacking

sequences and crack density under transversely loaded pressure. Also, the effect of crack

opening/closed was considered in the examination. Through this study, it is realized that the

transverse matrix crack causes moderate stiffness reduction and affects the responses of the

composite shell.

Key Words: Laminated Cylindrical Shell, Nonlinear Finite Element Analysis, Transverse

Matrix Crack, Stiffness Degradation

1. Introduction

Laminated composite panels, applied by bend­

ing and twisting moments, have been investigated

for studying the effect of transverse matrix cracks.

Previous works have been studied for the crack

itself, which may affect the behaviour of laminat­

ed composite structures.

The matrix crack cause stiffness degradation in

the composite structures. Therefore, the stiffness

degradation due to the crack is main cause of the

collapse in laminated structures.

Highsmith er al. (J 982) predicted the stiffness

degradation of a cross-ply laminate including the
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matrix cracks using shear lag analysis method.

Flaggs (1985) extended the method for the two

dimensional shear lag analysis. Lim, et al. (1989)

predicted the onset of the transverse cracks con­

sidering interlarninar shear layer. Lee, et al.

(1990) proposed a simplified shear lag analysis

using a progressive damage scheme for the crossp­
ly composite laminate under uniaxial tensile load­

ing. The shear lag analysis and probabilistic

analysis have been taken advantage of by several

researchers (Wang er al., 1984; laws and Dvorak,

1988; Fukunaga er al., 1984).

Nuismer and Tan (1988) proposed the analysis

of progressive matrix cracking in the composite

laminate, based on the two dimensional elasticity

theory. Talreja (1965) predicted stiffness reduc­

tion due to the transverse cracking during crack

growth using predeveloped stiffness damage rela­

tionship. Laws and Dvorak (1983; 1985) inves-
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crack opening 13

crack closed

Fig. 1 Crack opening and closing under
transverse load.

Fig.2 Doubly embedded fiber and matrix.

It is well known that the elastic field in the

ellipsoidal inclusion is uniform and can be

evaluated as

Consider now an elliptic cylinder, with stiffness

Cr and compliance ST' which is embedded in an
infinite matrix whose stiffness and compliance

tensors are, respectively, C and S. The matrix is

loaded by uniform stress. (j, or subjected to

uniform strain, £, at infinity. Let the stress and

strain fields in the inclusion be a- and CT respec­

tively. so that

(6)

(5)Q=C-CPC

For the inclusion, the properties of the sur­

rounding medium are identically used. The solu­

tion of the problem need to determine the tensor

P of which components can be referred in previ­

ous work (Kinoshita and Mura, 197J).

abPijkl=g;;:

r: ({}).!JkWI+ WJ;k{})t+ {}),.ji/OJk+ (});/i/Wk) d,l, (4)
)0 (a2w~+ b2wD .,..

where aJ, =cosl/J, w2=sint/J and fik are the inverse

of Cc». Wj WI' In this study, C and S are obtained
from micromechanics relations, self-consistent

method (Whitney and McCullough, 1990).

It is often convenient to work with the tensor Q
which is defined by

2. Governing Equation for Composite
Laminate in Two Phase System

a s- Ce. c=Sa. CS=SC=l (I)
Q=C-CPC (2)

tigated stiffness reduction using self consistent

method and deriving stress-strain relation in the
presence of matrix cracks.

Most of the previous works have been inves­

tigating stiffness reduction due to the transverse

matrix crack in a curved composite laminate

under two dimensional or plane loading. In

recent years, stiffness reduction of a curved com­

posite laminate panel has been examined under

bending or twisting moments (Park, Kang,

Chung, and Lee, 1997; Park and Lee, 1998).

In present study, nonlinear structural behavior

of laminated cylindrical shell will be examined

under transversely loaded pressure by nonlinear

finite element analysis. In the study, the effect of

the crack density is included and crack opening/

closing (Fig. I) also considered. The numerical

study is pursued for various laminate angles,

stacking sequence and crack density.

The equations for a two-phase model can be

derived using the theory by Hill (1965a; t965b).

The theory is based on the solution of an inclu­

sion problem for an elliptic cylinder in an

anisotropic elastic medium. The constitutive

equations are

Turning now to the basic equations for com­

posites. we note that in order for the concept of

overall moduli to be meaningful, it is essential to

where C and S are the fourth order stiffness and

compliance tensors, respectively.

The geometry of the elliptic cylinder in an
infinite homogeneous solid (Fig. 2) IS

(3)

CT= (I +P(CT- C)J-l £

6r=(I+Q(ST-S)J-13
(7)
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Fig. 3 Cross section of composite laminate in
the two-phase.

Fig. 4 A laminate with small diameter fibers
and slit crack.

Jl.. 4(C4~66) 112 (II)

, (C2ZC33) l!2(al12+ a{ 2)
"155= 4(C C C')2233- 23

Cl3Cssd- (C22C33-CJ3-2C23CS")a+C2~CSS==O (12)

The stiffness considering the crack density

parameter i3 for the cracked fibrous composite is

obtained through iterative scheme. The Eq. (5)

can be rewritten for numerical calculation in Eq.

(13) .

Fig. 5 Stiffness C" vs crack density 13.
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(8)

Suppose that parallel slit cracks are equally

distributed in the composite and have the same

direction with the fibers. In the phase-two

medium, the fiber diameters are very small

compared with the crack length or ply thickness 2
a. We choose xI-axis to be normal to all crack

planes, as shown in the Fig. 3. The cracks can be

modelled by taking the aspect ratio in the elliptic

cylinder to be zero. We will choose phase 2
(matrix) to contain voids and taking the limit 0
-- 0 of cracks. The overall stiffness and compli­

ance tensors for the phase-two medium are

obtained by aspect ratio 0= bl a. the number of

voids per unit area in X2-X3 plane, and crack

density 11=4«7].

consider macroscopically uniform loading. In

such circumstances the applied stress is equal to

the average stress, (j, and the phase average

stresses, iJr i and strains, §" are related to the

overall averages through

The error bound e used here is 0.001. The

stiffness C for the cracked fibrous composite has

nine independent coefficients different from five

constants for the uncracked composite.

The tensor i1 depends on the stiffness C. When

we start iteration, the Jl (C) is calculated by

uncracked stiffness C= C(U}' Iterations perform

until convergence condition (14) is satisfied for

the stiffness. The condition used herein is

I
C=Cu-411".8Cu"1C (9)

I
5=5u+411".8A (10)

In Eqs. (9) - (!O), the subscript u denotes

uncracked state. In two phase, parameter A is

defined in Law and Dvorak's work (1988, 1983).

Stresses are represented in vector form such as

{0"11o 0i2, (}33, 0"12, (}23, 0"13)T.

Nonzero parametric tensor 11 has only three

components and al' a2 are solution of quadratic

Eq. (12).

C33afl2+ aJi2)
(CZ2C33 - Ci3)

( 14)
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3. Formulation for Nonlinear Finite
Element Analysis

Equation for the (n+ l)th equilibrium state is

derived using the principle of virtual work

(Bathe, 1982).

In Eq. (15). SIj, elj' f.. 7;, and lit denote the

second Piola-Kirchhoff stress, Lagrangian strain,

externally applied body force, externally applied

surface traction, and displacements, respectively.

V and S are volume and surface at the (n + I) th

equilibrium state. Usi ng the updated Lagrangian

formulation (Bathe, 1982), the linearized equa­

tion of Eq, (15) for n-th equilibrium state is

given in the Eq, (16).

r CDkl ekt oeudV + r aOo7jud V = ovVO
+

1

t.: )v ll

-lnOOOClJdV (16)

In Eq, (16). Cljkl' Olj, oW represent stiffness.

Cauchy stress, and the external virtual work

respectively. Incremental linear strain, eiJ and

incremental nonlinear strain, 7JlJ are given in Eqs,

(17)-(18).

(17)

( 18)

In Eqs, (17) and (18), incremental displace­

ments u. is defined as displacements at the n-th

and (n+ l)th equilibrium states in Eq. (19).

Ui= Uln +1- lil" (19)

Based on the theory of the first order shear

deformation, the incremental displacement of the

eight node three dimensional degenerated shell

element (Panda and Natarajan, 1981; Chao and

Reddy, 1984) is given by Eq. (20).

In Eq. (20). $, 7J, S are local coordinate of

an element. u: N". t". and Vk are incremental

displacements, shape function. shell thickness and

incremental normal vector in the k-th node,

respectively. Using the Eqs. (17) - (20), the rela­

tions between strain and displacements are given

by Eq. (21).

(21 )

In Eq, (21), BL and BNL are linear and non­

linear strain-displacement matrix, respectively.

Using the modified Newton-Raphson iterative

method (Cheney and Kincaid, 1985), Eq. (J6)

can be written by Eqs, (19) - (21) as follows

(KL +Ksd ..du(l) = R(ll - F":" (22)

where

KL= j"mc EdV

K";L=j" mdrEdV
V"

F= !nEUJdV

R= ( N'fdll+ r N'T dS)\-" j;

are given. t5 and tJ are Cauchy stress matrix and

Cauchy stress vector. f and T denotes body force

and surface traction, respectively.

4. Calculation of Degraded Stiffness
of a Laminated Shell

For the numerical study of composite laminat­

ed structures, elastic modulus and Poisson's ratio

are calculated for the composite laminate includ­

ing matrix cracks and stiffness matrix is obtained

from the composite material properties. for the

uncracked stiffness matrix is calculated in accor­

dance with the crack density in matrix and fiber

volume fraction. 'if. The cracked stiffness is

obtained from the Eq, (13) to satisfy the conver­

gence criteria (14).

In the finite element analysis, we have to decide

whether the crack is open or closed. When the

transverse stress 6'22 at the crack is positive, the

crack is considered as open; when the stress 0'22 is

negative, the crack is considered as closed. The

crack opening/closed take effect on the con-



822 500- Yang Lee and Jungsun Park

8.,- --,

12,.------------------,

Fig. 7 Stiffness C33 vs crack density ;3.

0.80.4 0.6

Crack Density, j}

0.2

..

10 -..-... _ ........."--A-._..__A.-

8 --.__•--a -----.-.----.-----------.-.-.-.---

"o

'""U 4

5. Numerical Example

stitutive relation. For crack opening, stiffness

terms in the constitutive relation, corresponding

to the transverse direction, are set to be zero. For

crack closed, the stiffness is unchanged from the

cracked stiffness. Eq. (13).

In practical analysis, the laminates containing

matrix cracks are not able to resist tensions per­

pendicular to the fiber axis, but capable to do

compressions. Therefore, the preliminary analy­

sis, which calculates cracked stiffness and con­

siders the crack opening/closed, will be proceed­

ed again to judge whether the transverse stress in

the laminate is positive or negative, until the state

of transverse stresses becomes negative. After the

preliminary analysis, nonlinear finite element

analysis will start to iterate as explained in Eq.

(22)

1.0
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Fig. 8 Stiffness Cn vs crack density {J.
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5.1 Stiffness degradation of a composite
material containing matrix crack

For several fiber volume fractions, (Vr= O.2, O.

4. 0.6), the degraded sriffnesses, CIj, of a compos­

ite material are shown in Fig. 6-Fig. 13 for

varying crack density. fJ. The stiffnesses are calcu­

lated using Eq. (13) until satisfying the conver­

gence criteria (14). The material properties, used

in the calculation. are listed in the Table I. As

shown in the Fig. 6- Fig. 13, stiffness in the fiber

axis (C ll ) remains almost constant. Other stiffnes­

ses (C 12, C22• C23, C33, C0\4' C55, C66) decrease

rapidly as the crack density increase. The other

remaining stiffnesses show moderate change.

Fig. 9 Stiffness CI3 vs crack density ;3.
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Fig. 6 Stiffness CZ2 vs crack density ;3. Fig. 10 Stiffness C23 vs crack density (3.
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Fig. 13 Stiffness C66 vs crack density (3.

drical shell is presented to compare to previous

work which has been done by Crisfield (1981),

The numerical model for the verification is shown

in the Fig. 14 For finite element discretization. a

1/4 model of the cylindrical shell, which consists

of 25 finite elements. is suggested taking advan­

tage of the reflective symmetry. The present non­

linear finite element code is implemented using 8

-node three dimensional degenerated shell ele­

ment and the theory of the first order shear

deformation. Reduced 2 X 2 X 2 integration rule is

adapted for numerical integration. The elastic

modulus and Poisson's ratio are E=3,105 Mpa

and !/=0.3. The radius of curvature and longitu­

dinallength are R=B=2540 mm. The shell thick­

ness is t= 3.175 mm.

In Fig. 14, present and Criesfield numerical

results (1981) are plotted. Figure 14 shows the

present nonlinear analysis code well matches to

Criesfield work. Therefore, the present code,

which is able to do nonlinear finite element

analysis of laminated shell structures, is proved to

handle isotropic cylindrical shell well. It is ver­

ified as usable to perform nonlinear finite analysis

of a clamped cylindrically laminated shell.

1.00.8
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Fig. 12 Stiffness C55 vs crack density (3.

a+--~__r---_,_-~__,-~-._,_---I
0.0

Table 1 Material properties of T 300/976 GriEp

(GPa).

Ell I E22 G ' 2 G23 ~12

Fiber 230.0 I 16.0 9.0 6.1 0.3

I
I I

Matrix 3.7 3.7 I 1.4 1.4 I 0.35I
I

5.2 Verification of the nonlinear finite
element program

In order to verify the nonlinear finite element

analysis code used in this study, isotropic cylin-
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5.3 A cylindrically laminated shell clamped
at 4 edges

The cylindrically laminated shell is clamped at

4 edges and applied by transversely loaded uni­

form pressure. In the finite element model, 16

elements are used. The deflections are examined

at the center of the cylindrical shell.

The deflections are varied for several laminated

sequences ([90/90/0/0]" [45/-45/90/0J5' and

[90/90/90/90J 5) and crack densities <P' =0; 13 =
0.5 with/without crack opening/closed) as shown

in the Fig. 15_ Fig. 16 shows deflections by chang­

ing the crack density from 0 to I without con­

sidering crack opening/closed effect. The analysis

provides the fact that the deflections considering

large deformation in the nonlinear structural

analysis vary moderately by increasing crack

density. Fig. 17 is the plot for deflections varying

the crack density for three laminated sequences

([45/-45/90/0J., [90/90/0/0J., and [O/O/O/Op.
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6. Conclusion

In this study, considering geometrically non­

linear deformation, the stiffness degradation of

laminated cylindrical shell was investigated in the

variation of crack density and fiber volume frac­

tion. After the crack opening/closed has been

decided by checking the transverse stresses in the

cylindrical shell. nonlinear finite element analysis

has been done. The stiffness degradation of a

composite material was investigated. As a numeri­

cal example, a laminated cylindrical shell

clamped at 4 edges was applied by transverse

uniform pressure.

From the numerical results, it was shown that

the consideration of crack opening/closed affects

on the deflections of the laminated cylindrical

shell containing matrix cracks, resulting from the

stiffness reduction of composite laminate. The

crack opening/dosed should be included for the

study of composite structures including nonlinear

deformation.
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